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Abstract The intimate connection between the Banach space wavelet reconstruction
method for each unitary representation of a given group and some of well known quantum
tomographies, such as: tomography of rotation group, Spinor tomography and tomography
of Unitary group, is established. Also both the atomic decomposition and Banach frame
nature of these quantum tomographic examples is revealed in details.
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1 Introduction

The mathematical theory of wavelet Transform finds nowadays an enormous success in
various fields of science and technology, including treatment of large databases, data and
image compression, signal processing, telecommunication and many other applications [1].
After the empirical discovery by Morlet [2], it was recognized from the very beginning
by Grossmann, Morlet, Paul and Daubechies [3] that wavelets are simply coherent states
associated to affine group of the line (dilations and translations) [4, 5]. Thus, immediately the
stage was set for a far reaching generalization [3, 6]. Unlike function which form orthogonal
bases for space, Morlet wavelets are not orthogonal and form frames. Frames are the set
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of functions which are not necessarily orthogonal and which are not linearly independent.
Actually, frames are a repeatable set of vectors in Hilbert space which produces each vectors
in space with a natural representation.

Recently another concept called atomic decomposition have played a key role in further
mathematical development of wavelet theory. Indeed atomic decomposition for any space
of function or distribution aims at representing any element in the form of a set of simple
function which are called atoms [7]. As far as the Banach space is concerned, Feichtinger–
Grocheing [9] provided a general and very flexible way to construct coherent atomic decom-
positions and Banach frames for Banach spaces.

The concept of a quantum state represents one of the most fundamental pillars of the
paradigm of quantum theory. Usually the quantum state is described either by state vec-
tor in Hilbert space, or density operator or a phase space probability density distribution
(quasi-distributions). The quantum states can be determined completely from the appropri-
ated experimentally data by using the well known technique of quantum tomography or
better to say tomographic transformation.

A general framework is already presented for the unification of the Hilbert space wavelets
transformation on the one hand, and quasi-distributions and tomographic transformation as-
sociated with a given pure quantum states on the other hand [8]. Here in this manuscript we
are trying to establish the intimate connection between the Banach space wavelet reconstruc-
tion method developed by Feichtinger–Grocheing [9, 10] and some of well known quantum
tomographies associated with mixed states, such as: tomography of rotation group [11–
14], Spinor tomography [15, 16], discrete spin tomography [17] and tomography of Unitary
group [18, 19], all which can be represented by density matrices. Since the density matrix
can be presented through Banach space in quantum physics [20]. Therefore, it is natural to
do quantum tomography of any density matrix by using the wavelet transform and its inverse
in Banach space connected with the corresponding group representation associated with that
density matrix. The quantum tomography used by this method for the mixed quantum states
is completely consistent with other commonly used methods. Also both the atomic decom-
position and Banach frame nature of these quantum tomographic examples is revealed in
details.

The paper is organized as follows:
In Sect. 2 we define wavelet transform and its inverse for each unitary representation of
a given group in Banach space and then define atomic decomposition and Banach frame in
Banach space. In Sect. 3 we first obtain the quantum tomography associated with the unitary
representation of a given group in Banach space and then define its atomic decomposition
and Banach frame bounds. The section is ended with the derivation of some typical quantum
tomographic examples, such as: tomography of rotation groups, Spinor tomography and
tomography of unitary group, by using the Banach space wavelet reconstruction method.
The paper is ended with a brief conclusion.

2 Wavelet Transform, Frame, and Atomic Decomposition on Banach Spaces

The following is a brief recapitulation of some aspects of the theory of wavelets, atomic
decomposition, and Banach frame. We only mention those concepts that will be needed in
the sequel, a more detailed treatment may be found in, for example, [7, 9, 21, 22].

Let G be locally compact group with left Haar measure dμ and let π be a continuous
representation of a group G in a (complex) Banach space B.
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A representation for group G × G in the space L(B) of bounded linear operators acting
on Banach space B: is defined as:

T : G × G → L(L(B)) : Ô → U(g−1
1 )ÔU(g2), (2.1)

where if, g1 = g2, the representation is called adjoint representation, and if g2 is equal to
identity operator, the representation is called left representation of group. We will say that
set of vectors bg = T (g)b0 form a family of coherent states if there exists a continuous non-
zero linear functional l0 ∈ B∗ (called test functional) and a vector b0 ∈ B (called vacuum
vector) such that

C(b0, b
′
0) =

∫
G

〈T (g−1)b0, l0〉〈T (g)b′
0, l

′
0〉dμ(g), (2.2)

is non-zero and finite, which is known as the admissibility relation. For unitary representa-
tion in Hilbert spaces, the condition (2.2) is known as square integrability. Thus our defini-
tion describes an analog of square integrable representation for Banach space.

The wavelet transform W from Banach space B to a space of function F(G) that defined
by a representation π of G on B, a vacuum vector b0 and a test functional l0, is given by the
following formula:

W : B → F(G) : O → Ô(g) = [WÔ](g) = 〈T (g−1)Ô, l0〉 = 〈Ô,π∗(g)l0〉 (2.3)

and the inverse wavelet transform M from F(G) to B is given by the formula:

M : F(G) → B : Ô(g) → M[Ô] =
∫

G

Ô(g)bxdμ(g) =
∫

G

Ô(g)T (g)b0dμ(g). (2.4)

The operator P = MW : B �−→ B is a projection of B into its linear subspace, in which b0 is
cyclic (i.e. the set {T (g)b0 | g ∈ G} span Banach space B), and MW(Ô) = P (Ô) where the

constant P is equal to
c(b0,b′

0)

〈b0,l′0〉 . Especially, if in cases, left representation U is an irreducible

representation; then, the inverse wavelet transform M is a left inverse operator of wavelet
transform W on B, i.e, MW = I .

Frames can be seen as a generalization of basis in Hilbert or Banach space. Banach
frames and atomic decomposition are sequences that have basis-like properties but which
need not to be bases. Atomic decomposition has played a key role in the recent development
of wavelet theory.

Now we define a decomposition of a Banach space as follows:

Definition of atomic decomposition Let B be a Banach space, and Bd be an associated
Banach space of scalar-valued sequences indexed by N = {1,2,3, . . .}, and let {yi}i∈N ⊂ B∗
and {xi}i∈N ⊂ B be given. If

(a) {〈Ô, yi〉} ∈ Bd for each Ô ∈ B,
(b) The norms ‖Ô‖B and ‖{〈Ô, yi〉}‖Bd

are equivalent,
(c) Ô = ∑∞

i=1〈Ô, yi〉xi for each Ô ∈ B,

then ({yi}, {xi}) is an atomic decomposition of B with respect to Bd . In cases, the norm
equivalence is given by

A‖Ô‖B ≤ ‖{〈Ô, yi〉}‖Bd
≤ B‖Ô‖B, (2.5)

then A, B are a choice of atomic bounds for ({yi}, {xi}).
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Definition of Banach frame Let X be a Banach space, and Bd be an associated Banach
space of scalar-valued sequences indexed by N and let {yi}i∈N ⊂ B∗ and S : Bd −→ B be
given. If

(a) {〈Ô, yi〉} ∈ Bd for each x ∈ B,
(b) The norms ‖x‖B and ‖{〈Ô, yi〉}‖Bd

are equivalent,
(c) S is bounded and linear, and S{〈Ô, yi〉} = Ô for each O ∈ B,

then ({yi}, S) is a Banach frame for B with respect to Bd . The mapping S is called the
reconstruction operator. If the norm equivalence is given by A‖Ô‖B ≤ ‖{〈Ô, yi〉}‖Bd

≤
B‖Ô‖B , then A, B will be a choice of frame bounds for ({yi}, S).

Obviously one can show that the admissibility condition is the same as frame condition.

3 Quantum Tomography via Group Theory with Wavelet Transform
on Banach Space

Group tomography of a compact group G, with an irreducible unitary representation U act-
ing on separable Hilbert space H, means that, every element of B(H), the Banach algebra of
bounded linear operators acting on H, can be constructed by the set {U(g), g ∈ G} according
to formula (3.2), where the set {U(g), g ∈ G} is known as tomographic set and Tr[U †(g)Ô]
is sampling set or tomogram set of a given operator Ô [23]. When H is finite-dimensional,
the hypothesis that {U(g)} is a tomographic set is sufficient to reconstruct any given oper-
ator from the tomographic set by using (3.2), but the case of dim(H) = ∞ needs a further
condition to make sure that every expression converges and that it can be attributed to a
precise mathematical meaning. More explicitly, U needs to fulfill the following inequality:

∫
dμ(g)〈f1,U(g)f2〉〈f3U(g),f4〉 = 〈f1, f4〉〈f3, f2〉 ∀ |f1〈, |f2〉, |f3〉, |f4〉 ∈ H, (3.1)

which is known as the square integrability of the representation U(g). If O is a trace-class
operator on H and {U(g)} is a tomographic set and satisfies (3.1) then we have

Ô =
∫

dμ(g)Tr[U †(g)Ô]U(g). (3.2)

Now we try to obtain the above explained tomography via wavelets transform in Banach
space. In order to do so, we need choose the tomographic set U(g) as a continuous represen-
tation of the wavelet transformation and the identity operator as a vacuum vector. Therefore,
the corresponding wavelet transformation takes the following form:

W : B �→ F(g) : Ô �→ Ô(g) = 〈Ô, lg〉 = 〈Ô,U(g)l0〉 = 〈ÔU(g)†, l0〉 = tr(ÔU(g)†). (3.3)

With those conditions, the inverse wavelet transform M becomes a left inverse operator of
the wavelet transform W :

MW = I ⇒ M : F(g) �→ B : Ô(g) �→ M[Ô] = MW(Ô) = Ô

=
∫

dμ(g)〈Ô, lg〉bg. (3.4)
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Therefore, with the choice of b0 = I (identity operator), the tomography relation can be
written as:

Ô =
∫

dμ(g)Tr(ÔU(g)†)U(g). (3.5)

By choosing b0 = I , b′
0 = |f2〉〈f1|, l0(Ô) = Tr(Ô|f4〉〈f3|) and l′0(Ô) = Tr(Ô) (with

f1, f2, f3, f4 as arbitrary vectors in H and A as an arbitrary bounded operator), the ad-
missibility condition for wavelet transform on Banach space (2.2) can be reduced to the
square integrability for group theory tomography (3.1).

Similarly, by the same choice as above for vacuum vectors and test functions, we can
get the atomic decomposition and Banach frame for this example. To do so we need further
to choose set {U(g)l0} ⊂ B∗ as the index sequence of functionals (with index set G) which
belong to dual Banach space, then we can show that:

(a) {〈Ô,U(g)l0〉} = {Tr(ÔU †(g))} ∈ Bd for each Ô ∈ B,

(b) The norms ‖Ô‖B and ‖{Tr(ÔU †(g))}‖ = [∫ Tr[ÔU †(g)]Tr[ÔU †(g)]dμ(g)] 1
2 are

equivalent in the sense that they satisfy the inequality (2.5) with the atomic bounds A =
B = 1, provided that we use the Hilbert–Schmidt norm for the operator Ô and finally by
using the relation (3.2) we obtain

(c) Ô = ∫
Tr(ÔU †(g))U(g)dμ(g).

Therefore, {U(g)b0,U(g)l0} is an atomic decomposition of Banach space of bounded
operators acting on representation space with respect to Bd with atomic bounds A = B = 1.

At the end by the same choice of vacuum vector, test functional and index sequence of
functional as in the atomic decomposition case, we can show that the required conditions (a),
(b) for the existence of Banach frame is the same as the atomic decomposition one, and in
order to have the last condition for the existence of atomic decomposition, we can define the
reconstruction operator S as follows:

(c) S{Tr(ÔU †(g))} = ∫
Tr(ÔU †(g))U(g)dμ(g) = Ô for each Ô ∈ B.

It is straightforward to show that the operator S as defined above is a linear bounded
operator.

Therefore {U(g)l0, S} is a Banach frame for B with respect to Bd with frame bounds
A = B = 1.

3.1 Tomography for Rotation Group

The most general (unnormalized) density matrix ρ̂ is a (2s + 1)× (2s + 1) hermitian matrix
with (2s + 1)2 real parameters. Various methods have been proposed to determine ρ̂. The
expectations of (2s + 1)2 − 1 linearly independent spin multipoles do fix a unique (normal-
ized) density operator [24]. In order to establish a down-to-earth approach, it is natural to
restrict the measurements to those performed with a standard Stern–Gerlach apparatus, the
quantization axis of which can be arbitrarily oriented in space. Therefore, we are dealing
here with Hilbert space spin tomography i.e., angular momentum tomography [11, 12, 14,
17] with Hilbert space H = C2s+1, s being the spin of the particle, and the corresponding
group being SU(2).

Obviously, the diagonal elements of the density matrix are non-negative and their sum
is equal to unity, their physical meaning being the probabilities of observing the value of
spin projection on fixed axis in space. Obviously the relevant representation of SU(2) group
is irreducible unitary representation D(Ω) = D(α,β, γ ), where α,β, γ are Euler angles
which are also our tomographic set at the same time. The Haar invariant measure for SU(2)
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is given by [25]:

dg(α,β, γ ) = 2s + 1

4π2
sin(β)dαdβdγ, (3.6)

and finally spin tomography can be written as:

ρ = 2s + 1

4π2

∫ 2π

0

2s + 1

4π2
sin(β)dαdβdγ Tr[ρD†(α,β, γ )]D(α,β, γ ). (3.7)

Now we try to obtain the above explained tomography via wavelets transform in Banach
space. In order to do so, we need choose the tomographic set D(α,β, γ ) as a continuous
representation of the wavelet transformation and the identity operator as a vacuum vector.
Therefore, the corresponding wavelet transformation takes the following form:

W : B �→ F(G) : ρ̂ �→ ρ̂(α,β, γ )

= 〈ρ̂, l(α,β,γ )〉 = 〈ρ̂,D(α,β, γ )l0〉 = 〈ρ̂D†(α,β, γ ), l0〉 = Tr(ρ̂D†(α,β, γ )). (3.8)

With this condition, inverse wavelet transform in M is a left inverse operator on B for the
wavelet transform W :

M : F(G) �→ B : ρ̂(α,β, γ )) �→ M[ρ̂] = M(ρ̂),

MW(ρ̂) =
∫

dμ(α,β, γ )〈ρ̂, l(α,β,γ )〉b(α,β,γ ).
(3.9)

Also the constant on left hand side of (2.2) becomes proportional to the dimension of uni-
tary representation, that is, C(b0, b

′
0) = 2s+1 = d , where d is dimensional of representation.

Finally the constant P becomes equal to one, i.e., P = c(b0,b′
0)

〈b0,l′0〉 = 1, and the reconstruction

procedure of wavelet transform (operation of the combination of wavelet transform and its
inverse one, MW on the density operator ρ̂) leads to the tomography relation (3.7).

Again, by the same choice as above for vacuum vectors and test functions, we can get
the atomic decomposition and Banach frame for this example. To do it, we need just choose
the set {D(α,β, γ )l0} ⊂ B∗ as the index sequence of functionals (with index set G) which
belong to dual Banach space, then we can show that:

(a) {〈ρ̂,D(α,β, γ )l0〉} = {Tr(ρ̂D†(α,β, γ ))} ∈ Bd for each ρ̂ ∈ B,
(b) The norms ‖ρ̂‖B and ‖{Tr(ρ̂D†(α,β, γ ))}‖ are equivalent in the sense that they

satisfy the inequality (2.5) with the atomic bounds A = B = 1, provided that we use the
Hilbert–Schmidt norm for the operator ρ̂ :

∫
‖Tr(ρ̂D†(α,β, γ ))‖dμ(α,β, γ )

=
∫

Tr(ρ̂D†(α,β, γ ))Tr(ρ̂D†(α,β, γ ))dμ(α,β, γ )

=
∑

m,m′,n,n′

∫
ρ̂J

mm′ ρ̂∗J
nn′DJ

nn′(α,β, γ )D∗J
mm′(α,β, γ )dμ(α,β, γ ) = ‖ρ̂‖2 (3.10)

and if we use the relation (3.7), we have:
(c) ρ̂ = ∫

Tr(ρ̂D†(α,β, γ ))D(α,β, γ )dμ(α,β, γ ).
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Therefore, {D(α,β, γ )b0,D(α,β, γ )l0} is an atomic decomposition of Banach space of
bounded operators acting on spin s representation space with respect to Bd with atomic
bounds A = B = 1.

Finally, the same choice of vacuum vector, test functional and index sequence of func-
tional as in the atomic decomposition case yield the required conditions (a) and (b) for the
existence of Banach frame, which is the same as the atomic decomposition one, and in order
to have the last condition for the existence of atomic decomposition, we define the recon-
struction operator S as follows:

(c) S{Tr(ρ̂D†(α,β, γ ))} = ∫
Tr(ρ̂D†(α,β, γ ))D(α,β, γ )dμ(α,β, γ ) = ρ̂ for each

ρ̂ ∈ B.
Also it is straightforward to show that the operator S as defined above is a linear bounded

operator.
Therefore, {D(α,β, γ )l0, S} is a Banach frame for Banach space of operators acting on

spin representation space with respect to Bd with frame bounds A = B = 1.
Let us first introduce (2s + 1)2 irreducible multipole tensor operators TLM [26]:

T̂ s
LM =

√
2L + 1

2S + 1

s∑
m,m′=−s

|sm〉〈sm′|Csm
sm′LM. (3.11)

By substituting the following identity:

D̂s(α,β, γ ) =
∑

L,M,m,m′

√
2l + 1

2s + 1
Csm

sm
′
LM

Ds
mm′(Ω)T̂ s

LM. (3.12)

in (3.7) where Csm
sm′LM

are Clebsch–Gordan coefficients, and by using the sums involving
product of two Clebsch–Gordan coefficients, we get:

ρ̂ =
∑
LM

Tr[ρ̂T̂ s†

LM ]T̂ s
LM. (3.13)

On the other hand, we know that these operators are the most convenient basis for B,
Banach space of operators acting on (2s + 1)-dimensional Hilbert space associated with
the representation of rotation group, in sense that any linear bounded operator acting in the
(2s + 1)-dimensional spin state space can be expanded in terms of these multipole tensor
operators [13].

3.2 Tomography of Quantum Spinor States

The family of the probability distribution functions of the 1/2-spin projection is parameter-
ized by the point’s coordinates θ and ϕ on the sphere of unity radius. This parameterization
coincides with the physical meaning of the marginal distribution in the sense that the distri-
bution function w(m,Ω) is the probability to observe the spin projection m if we measure
this spin projection on the quantization axis which is parallel to the vector normal to the
surface of the sphere of the unit radius at the point with the coordinates θ and ϕ. If we know
the positive and normalized marginal distribution w(m,Ω), then, as it was shown in [15,
16, 27], the matrix elements ρ̂

(j)

ik can be calculated with the help of the measurable mar-
ginal distribution w(m,Ω) of the particle with an arbitrary spin j and the values of indices
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m = −j,−j + 1, . . . , j by means of the relation:

(−1)kρ̂
(j)

ik =
2j∑

J ′=0

J ′∑
M=−J ′

(2J ′ + 1)2
j∑

m=−j

(−1)m

⊗
∫

w(m,Ω)DJ ′
0M(Ω)

dΩ

8π2

(
j j J ′
m −m 0

)(
j j J ′
i −k M

)
, (3.14)

where i, k = −j,−j + 1, . . . , j and the integration has been operationalized according to
the rotation angles ϕ, θ,ψ

∫
dΩ =

2π∫

0

dϕ

2π∫

0

dψ

π∫

0

sin θdθ. (3.15)

Since in this example adjoint representation is used, the ψ parameter is removed and the
representation is limited to homogeneous space, but the representation which we used was
group representation. Therefore, the spin tomography can be obtained via wavelet transform
in Banach space on Homogeneous space S2 = SU(2)/U(1), for more details see [28].

Then definition of the wavelet transforms for adjoint representation is given by:

ρ̂(Ω) = 〈ρ̂, lΩ〉 = 〈T (Ω)ρ̂, l0〉 = 〈U(Ω)ρ̂(Ω)†, l0〉, (3.16)

where U is irreducible representation of SU(2) group for spin J . In this case, by choos-
ing the test functional as l0(ρ̂) = Tr[ρ̂|j,m1〉〈j,m2|], the corresponding wavelet transform
becomes:

ρ̂(Ω) = 〈U(Ω)|j,m1〉〈j,m2|U(Ω)†, ρ̂〉
= 〈j,m1|U(Ω)ρ̂U(Ω)†|j,m2〉 = ω(Ω,m1,m2). (3.17)

The inverse wavelet transform is:

M(ρ̂) =
∫

dΩω(Ω,m1,m2)U
†(Ω)b0U(Ω), (3.18)

if we choose b0 = |j,m1〉〈j,m2|, the inverse wavelet transform becomes:

M(ρ̂) =
∫

dΩω(Ω,m1,m2)U
†(Ω)|j,m1〉〈j,m2|U(Ω). (3.19)

Therefore, the matrix elements M(ρ̂)ik take the following form:

M(ρ̂)ik =
∫

dΩω(Ω,m1,m2)〈j, i|U †(Ω)|j,m1〉〈j,m2|U(Ω)|j, k〉. (3.20)

By putting m1 = m2 = m, and taking the average sum over m, we get:

M(ρ̂)ik =
(

1

2j + 1

)∑
m

∫
dΩω(Ω,m)(−1)m−jD

j

im(Ω)D
j

−k−m(Ω), (3.21)
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now, if we expand the product of D functions in the terms of D function (by using addition
rule of D functions), after some algebra we get:

MWρ̂
(j)

ik =
(

1

2j + 1

) 2j∑
J ′=0

J ′∑
M=−J ′

(2J ′ + 1)2
j∑

m=−j

(−1)m−k

⊗
∫

w(m,Ω)DJ ′
0M(Ω)

dΩ

8π2

(
j j J ′
m −m 0

)(
j j J ′
i −k M

)
, (3.22)

also after some routine calculation, we can show that the constant on left hand side of (2.2) is

C(b0, b
′
0) = 2j + 1, the constant P = c(b0,b′

0)

〈b0,l′0〉 is equal to 1
2j+1 , and finally the reconstruction

procedure of wavelet transform (operation of the combination of wavelet transform and its
inverse one, MW on the density operator ρ̂) leads to the tomography relation (3.14).

Again, by the above choice of vacuum vectors and test functions, we can get the atomic
decomposition and Banach frame for this example. To do it, we need just choose the set
{T (Ω)l0} ⊂ B∗ as the index sequence of functionals (with index set G) which belong to
dual Banach space, then we can show the following conditions:

(a) {〈ρ̂, T (Ω)l0〉} = {Tr(T †(Ω)ρ̂)} ∈ Bd for each ρ̂ ∈ B,
(b) The norms ‖ρ̂‖B and ‖{Tr(U(Ω)ρ̂U †(Ω))}‖ are equivalent in the sense that they

satisfy the inequality (2.5) with the atomic bounds A = B = 1
2j+1 , providing that we use the

Hilbert–Schmidt norm for the density operator ρ̂:

∫
‖Tr(U †(Ω)ρ̂U(Ω))‖dμ(Ω)

=
∫

Tr(U(Ω−1)ρ̂U(Ω))Tr(U(Ω−1)ρ̂U(Ω))dμ(Ω), (3.23)

if we use the relation (3.22), we have:
(c) ρ̂ = ∫

Tr(U(Ω−1)ρ̂U(Ω))U(Ω)b0U(Ω−1)dμ(Ω).
Therefore, {T (Ω)b0, T (Ω)l0} is an atomic decomposition of Banach space of bounded

operators acting on spin s representation space with respect to Bd with atomic bounds A =
B = 1

2j+1 .

Finally, the same choice of vacuum vector, test functional and index sequence of func-
tional as in the atomic decomposition case yield the required conditions (a) and (b) for the
existence of Banach frame which is the same as the atomic decomposition one, and in order
to have the last condition for the existence of atomic decomposition, we define the recon-
struction operator S as follows:

(c) S{Tr(U(Ω−1)ρ̂U(Ω))} = ∫
Tr(U(Ω−1)ρ̂U(Ω))U(Ω)b0U(Ω−1)dμ(Ω) = ρ̂ for

each A ∈ B.
Also it is straightforward to show that the operator S as defined above is a linear bounded

operator.
Therefore, {T (Ω)l0, S} is a Banach frame for Banach space of operators acting on spin

representation space with respect to Bd with frame bounds A = B = 1
2j+1 .

3.3 Discrete Spin Tomography

It is easy to characterize a class of discrete representations whose reconstruction is similar
to the continuous representation. The most general form of a density matrix of a single qubit
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can be written as:

ρ(�n) = 1

2
(1 + a�n.�σ),

where 0 ≤ a ≤ 1 and the unit vector in Bloch sphere �n is the direction along which the spin
is pointing up, and it satisfies the following conditions [29]:

K∑
α=1

�nα = 0,

1

3
δjk = 1

K

∑
α

(nα)j (nα)k.

(3.24)

In the dihedral and tetrahedral subgroups of SU(2), these condition are satisfied by unit
vectors that point to the vertices of any regular polyhedron inscribed within the Bloch sphere
i.e., a tetrahedron, octahedron, cube, icosahedron, or dodecahedron. The four projectors
for a tetrahedron are linearly independent. An octahedron gives rise to the six cardinal-
direction representations on the Bloch sphere. The regular polyhedral by no means exhausts
the possibility of representations of this sort. we can use simultaneously the vertices forms
of any number of polyhedral.

For spin s = 1 it is possible to find a finite group instead of SU(2). In fact, consider the
12 element Tetrahedric group composed of the ± 2π

3 rotations around the versos:

{
�n1 = 1√

3
(1,1,1), �n2 = 1√

3
(1,−1,−1), �n3 = 1√

3
(−1,1,−1), �n4 = 1√

3
(−1,−1,1)

}
,

of the π rotations around

{�n5 = (1,0,0), �n6 = (0,1,0), �n7 = (0,0,1)},
and of the identity. It induces a unitary irreducible representation on the space C3, given by
3 × 3 rotation matrices. Hence, the tomography for S = 1 can be written as [14, 17]:

ρ̂ = 1

4

1∑
m=−1

7∑
j=1

P (�nj ,m)Kj (m − �s.�nj ) + 1

4
I, (3.25)

where P (�nj ,m) is the probability of having outcome m which is the result of measuring the
operator �s.�n and Kj(m − �s.�nj ) is a kernel function representation eiΨ (�s.�n) and the identity
operator as the vacuum vector, the corresponding wavelet transform becomes:

W : B �→ F(n,Ψ ) : ρ̂ �→ ρ̂(n,Ψ )

= 〈ρ̂, l(n,Ψ )〉 = 〈ρ̂,Rn(Ψ )l0〉 = 〈R†
n(Ψ )ρ̂, l0〉 = tr(R†

n(Ψ )ρ̂). (3.26)

For the choice of the identity operator as a vacuum vector and the test functional l0(ρ̂) =
Tr[ρ̂], the inverse wavelet transform M (2.4) becomes left inverse operator of the wavelet
transform W :

MW = PI ⇒ M : F(n,Ψ ) �→ B : ρ̂(n,Ψ ) �→ M[ρ̂] = MW(ρ̂)

=
∑
Ψ,n

1

P
〈ρ̂, l(n,Ψ )〉b(n,Ψ ). (3.27)
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Evaluating the trace over the complete set of vectors |�n,m〉, which are the eigenstate of �S.�n,
with eigenvalues m, and by taking into account 〈�n,m|ρ̂|�n,m〉 = p(�n,m), we get:

MW(ρ̂) = 1

P

1∑
m=−1

7∑
j=1

P (�nj ,m)Kj (m − �s.�nj ) + 1

P
I (3.28)

we can show that the constant, on left hand side of (2.2) C(b0, b
′
0) = 12, the constant P =

c(b0,b′
0)

〈b0,l′0〉 = 4, and finally the reconstruction procedure of wavelet transform (operating the

combination of wavelet transform and its inverse one, MW on the operator ρ̂) leads to the
tomography relation (3.25).

Again, by the above choice for vacuum vectors and test functions, we can get the atomic
decomposition and Banach frame for this example similar to rotation group with bound
A = B = 4.

3.4 Unitary Group Tomography

Here in this case we consider a state with d levels. Firstly we prepare the generators for
SU(d) systems and thereby construct the density matrices for a qudit system. By choos-
ing an irreducible square integrable representation of SU(d) group as U(Ω) = eiĴ .n̂ψ , the
tomography relation is given by:

ρ =
∫

dμ(Ω)Tr[U †(Ω)ρ]U(Ω). (3.29)

Now we try to obtain the above explained tomography via wavelets transform in Banach
space. The wavelet transform W from Banach space B to a space of function F(G) is defined
by a representation U(Ω) = eiĴ .n̂ψ of G on B, with the selection of a vacuum vector b0

which is equal to identity, and a test functional l0(ρ̂) = Tr(ρ̂) is given by the following
formula:

W : B �−→ F(Ω) : ρ �−→ ρ̂(Ω) = 〈ρ, lΩ〉 = 〈U †(Ω)ρ, l0〉 = Tr[U †(Ω)ρ]. (3.30)

Also the constant on left hand side of (2.2) becomes proportional to the dimension of the uni-
tary representation, that is, C(b0, b

′
0) = d , where d is dimensional of representation. Finally

the constant P becomes equal to one, i.e., P = c(b0,b′
0)

〈b0,l′0〉 = 1, and the reconstruction procedure

of wavelet transform (operating the combination of wavelet transform and its inverse one,
MW on the density operator ρ̂) leads to the tomography relation (3.29).

We know that we can expand the SU(d) representation in terms of the generators J as:

U(Ω) =
d2−1∑
i=0

ai(Ω)Ji, ai(Ω) = 1

d
Tr[U(Ω)Ji], (3.31)

and using the relation Tr[JiJj ] = dδij , the tomography relation can be written as:

ρ =
∫

dμ(Ω)
∑
i,j

Tr[Jiρ]Jja
∗
i (Ω)aj (Ω). (3.32)
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Now using the identity: ∫
dμ(Ω)a∗

i (Ω)aj (Ω) = 1

d
δij , (3.33)

the tomography relation reduces to:

ρ = 1

d

∑
j

Tr[Jiρ]Ji. (3.34)

The generators of SU(d) group may be conveniently constructed by the elementary matrices
of d-dimensions, {ek

j | k, j = 1, . . . , d}.

(ek
j )μν = δνj δμk, 1 ≤ ν,μ ≤ d. (3.35)

There are d(d − 1) traceless matrices,

Θk
j = ek

j + e
j

k , (3.36)

βk
j = −i(ek

j − e
j

k ), 1 ≤ k < j ≤ d, (3.37)

which are the off-diagonal generators of the SU(d) group. We add the d − 1 traceless ma-
trices

ηr
r =

√
2

r(r + 1)

[
r∑

j=1

e
j

j − rer+1
r+1

]
, (3.38)

as the diagonal generators and obtain a total of d2 − 1 generators. SU(2) generators are, for
instance, given as {X = Θ1

2 = e1
2 + e2

1, Y = β1
2 = −i(e1

2 − e2
1),Z = η1

1 = e1
1 − e2

2}.
We now define the λ-matrices, which are similar to Pauli matrices in SU(2) case:

λ(j−1)2+2(k−1) = Θk
j , (3.39)

λ(j−1)2+2k−1 = βk
j , (3.40)

λj2−1 = η
j−1
j−1. (3.41)

In conjunction with a scaled d-dimensional identity operator these form a complete her-
mitian operator basis [18]. If we replace Ji with λi/2, unitary group tomography rela-
tion (3.34), reduced to

ρ̂d = 1

d

d2−1∑
j=0

rj λ̂j . (3.42)

In which ρ̂d is a density matrix of dimension d , a qudit, and Tr[ρ̂d ] = 1 implies that the

coefficient r0 is one. The condition Tr[ρ2
d ] ≤ 1 requires

∑d2−1
j=1 r2

j ≤ d(d − 1)/2.
At the end we can show that {U(Ω)b0,U(Ω)l0} is atomic decomposition and

({U(Ω)l0}, S) is Banach frame with atomic bounds A = B = 1.
We can extend these results to n-qudits. It is shown that for multiple qudits one needs only

to consider a space of operators defined by the tensor product of the generators, SU(d) ⊗
SU(d) ⊗ · · · ⊗ SU(d), and the representation is the tensor product of the representations,
where this representation is irreducible. If we choose the vacuum vector as b0 = Id ⊗ Id ⊗
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· · · ⊗ Id for admissibility condition we will have C(b0, b
′
0) = dn. Then n-qudit tomography

can be written as:

ρ̂nd = 1

dn

d2−1∑
j1...jn=0

rj1...jnλ̂j1 ⊗ · · · ⊗ λ̂jn, (3.43)

where, r00...0 = 1 and rj1,j2,...,jn = dn

2n Tr[λj1 ⊗λj2 . . .⊗λjnρ] (j1, j2, . . . , jn = 1,2, . . . , d).

4 Conclusions

The Banach space wavelets transformation nature of quantum tomography of mixed quan-
tum states has been revealed. Also by considering various well known examples of quantum
tomography, it is shown that, the quantum tomography of mixed quantum states, are al-
most the same as the Banach space wavelets reconstruction formalism associated with some
unitary representation of finite or infinite group. Using this fact, the frame and atomic de-
composition nature of quantum tomography of mixed states is also explained.
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